Climate Change and the Human Fingerprint

There is extensive statistical evidence from so-called “fingerprint” . Each factor that affects climate produces a unique pattern of climate response, much as each person has a unique fingerprint. Fingerprint studies exploit these unique signatures, and allow detailed comparisons of modeled and observed climate change patterns.

Scientists rely on such studies to attribute observed changes in climate to a particular cause or set of causes. In the real world, the climate changes that have occurred since the start of the Industrial Revolution are due to a complex mixture of human and natural causes. The importance of each individual influence in this mixture changes over time. Of course, there are not multiple Earths, which would allow an experimenter to change one factor at a time on each Earth, thus helping to isolate different fingerprints. Therefore, climate models are used to study how individual factors affect climate. For example, a single factor (like greenhouse gases) or a set of factors can be varied, and the response of the modeled climate system to these individual or combined changes can thus be studied.

For example, when climate model simulations of the last century include all of the major influences on climate, both human-induced and natural, they can reproduce many important features of observed climate change patterns. When human influences are removed from the model experiments, results suggest that the surface of the Earth would actually have cooled slightly over the last 50 years. The clear message from fingerprint studies is that theobserved warming over the last half-century cannot be explained by natural factors, and is instead caused primarily by human factors.

Separating Human and Natural Influences on Climate

Human and Natural Influences on Climate

The blue band shows how global average temperatures would have changed due to natural forces only, as simulated by climate models. The red band shows model projections of the effects of human and natural forces combined. The black line shows actual observed global average temperatures. As the blue band indicates, without human influences, temperature over the past century would actually have first warmed and then cooled slightly over recent decades.

Another fingerprint of human effects on climate has been identified by looking at a slice through the layers of the atmosphere, and studying the pattern of temperature changes from the surface up through the stratosphere. In all climate models, increases in carbon dioxide cause warming at the surface and in the troposphere, but lead to cooling of the stratosphere. For straightforward physical reasons, models also calculate that the human-caused depletion of stratospheric ozone has had a strong cooling effect in the stratosphere. There is a good match between the model fingerprint in response to combined carbon dioxide and ozone changes and the observed pattern of tropospheric warming and stratospheric cooling.

In contrast, if most of the observed temperature change had been due to an increase in solar output rather than an increase in greenhouse gases, Earth's atmosphere would have warmed throughout its full vertical extent, including the stratosphere. The observed pattern of atmospheric temperature changes, with its pronounced cooling in the stratosphere, is therefore inconsistent with the hypothesis that changes in the Sun can explain the warming of recent decades. Moreover, direct satellite measurements of solar output show slight decreases during the recent period of warming.

The earliest fingerprint work focused on changes in surface and atmospheric temperature. Scientists then applied fingerprint methods to a whole range of climate variables identifying human-caused climate signals in the heat content of the oceans the height of the tropopause (the boundary between the troposphere and stratosphere, which has shifted upward by hundreds of feet in recent decades), the geographical patterns of precipitation, drought, surface pressure, and the runoff from major river basins.

Studies published after the appearance of the IPCC Fourth Assessment Report in 2007 have also found human fingerprints in the increased levels of atmospheric moisture (both close to the surface and over the full extent of the atmosphere), in the patterns of changes in Arctic and Antarctic surface temperatures.

Measurements of Surface Temperature and Sun's Energy

Measurements of Surface Temperature and Suns Energy
The Sun's energy received at the top of Earth's atmosphere has been measured by satellites since 1978. It has followed its natural 11-year cycle of small ups and downs, but with no net increase (bottom). Over the same period, has risen markedly (top).

The message from this entire body of work is that the climate system is telling a consistent story of increasingly dominant human influence – the changes in temperature, ice extent, moisture, and circulation patterns fit together in a physically consistent way, like pieces in a complex puzzle.

Increasingly, this type of fingerprint work is shifting its emphasis. As noted, clear and compelling scientific evidence supports the case for a pronounced human influence on global climate. Much of the recent attention is now on climate changes at continental and regional scales, and on variables that can have large impacts on societies. For example, scientists have established causal links between human activities and the changes in snowpack, maximum and minimum temperature, and the seasonal timing of runoff over mountainous regions of the western United States.

Human activity is likely to have made a substantial contribution to ocean surface temperature changes in hurricane formation regions.

Researchers are also looking beyond the physical climate system, and are beginning to tie changes in the distribution and seasonal behavior of plant and animal species to human-caused changes in temperature and precipitation.

For over a decade, one aspect of the climate change story seemed to show a significant difference between models and observations.

In the tropics, all models predicted that with a rise in greenhouse gases, the troposphere would be expected to warm more rapidly than the surface. Observations from weather balloons, satellites, and surface thermometers seemed to show the opposite behavior (more rapid warming of the surface than the troposphere). This issue was a stumbling block in our understanding of the causes of climate change. It is now largely resolved. Research showed that there were large uncertainties in the satellite and weather balloon data. When uncertainties in models and observations are properly accounted for, newer observational data sets (with better treatment of known problems) are in agreement with climate model results.

Patterns of Temperature Change Produced by Various Atmospheric Factors, 1958-1999

Patterns of Temperature Change
Climate simulations of the vertical profile of temperature change due to various factors, and the effect due to all factors taken together. The panels above represent a cross-section of the atmosphere from the north pole to the south pole, and from the surface up into the stratosphere. The black lines show the location of the tropopause, the boundary between the lower atmosphere (troposphere) and the stratosphere.

This does not mean, however, that all remaining differences between models and observations have been resolved. The observed changes in some climate variables, such as Arctic sea ice, some aspects of precipitation, and patterns of surface pressure,56 appear to be proceeding much more rapidly than models have projected. The reasons for these differences are not well understood. Nevertheless, the bottom-line conclusion from climate fingerprinting is that most of the observed changes studied to date are consistent with each other, and are also consistent with our scientific understanding of how the climate system would be expected to respond to the increase in heat-trapping gases resulting from human activities.

Scientists are sometimes asked whether extreme weather events can be linked to human activities.

Scientific research has concluded that human influences on climate are indeed changing the likelihood of certain types of extreme events. For example, an analysis of the European summer heat wave of 2003 found that the risk of such a heat wave is now roughly four times greater than it would have been in the absence of human-induced climate change.

Like fingerprint work, such analyses of humancaused changes in the risks of extreme events rely on information from climate models, and on our understanding of the physics of the climate system. All of the models used in this work have imperfections in their representation of the complexities of the “real world” climate system. These are due to both limits in our understanding of the climate system, and in our ability to represent its complex behavior with available computer resources. Despite this, models are extremely useful, for a number of reasons.

First, despite remaining imperfections, the current generation of climate models accurately portrays many important aspects of today's weather patterns and climate. Models are constantly being improved, and are routinely tested against many observations of Earth's climate system. Second, the fingerprint work shows that models capture not only our present-day climate, but also key features of the observed climate changes over the past century. Third, many of the large-scale observed climate changes (such as the warming of the surface and troposphere, and the increase in the amount of moisture in the atmosphere) are driven by very basic physics, which is well-represented in models. Fourth, climate models can be used to predict changes in climate that can be verified in the real world. Examples include the short-term global cooling subsequent to the eruption of Mount Pinatubo and the stratospheric cooling with increasing carbon dioxide. Finally, models are the only tools that exist for trying to understand the climate changes likely to be experienced over the course of this century. No period in Earth's geological history provides an exact analogue for the climate conditions that will unfold in the coming decades.